Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41.455
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719750

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
2.
Mediators Inflamm ; 2024: 7524314, 2024.
Article En | MEDLINE | ID: mdl-38725539

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Cell Differentiation , Cyclic AMP Response Element-Binding Protein , Cyclic Nucleotide Phosphodiesterases, Type 4 , RANK Ligand , Sorbitol , Sorbitol/pharmacology , RANK Ligand/metabolism , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cell Differentiation/drug effects , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Intestinal Mucosa/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Mice, Inbred C57BL , M Cells
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731952

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
4.
Food Res Int ; 186: 114322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729712

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
5.
Food Res Int ; 186: 114338, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729719

Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.


Fasting , Glucagon-Like Peptide 2 , Obesity , Permeability , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Female , Adult , Fasting/blood , Male , Glucagon-Like Peptide 2/blood , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome , Nutrients , Young Adult , Haptoglobins/metabolism , Endotoxemia , Lipopolysaccharide Receptors/blood , Acute-Phase Proteins/metabolism , Biomarkers/blood , Membrane Glycoproteins/blood , Membrane Glycoproteins/metabolism , Dietary Fats , Glucose/metabolism , Intestinal Barrier Function , Carrier Proteins , Protein Precursors
6.
Gut Microbes ; 16(1): 2347722, 2024.
Article En | MEDLINE | ID: mdl-38706205

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
7.
Sci Rep ; 14(1): 10479, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714793

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Colon , Ileum , Intestinal Mucosa , Serotonin , Serotonin/metabolism , Animals , Mice , Ileum/metabolism , Intestinal Mucosa/metabolism , Colon/metabolism , Enterochromaffin Cells/metabolism , Microelectrodes , Serotonin Plasma Membrane Transport Proteins/metabolism , Male , Electrochemical Techniques/methods , Mice, Inbred C57BL
8.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747908

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , STAT3 Transcription Factor , Severity of Illness Index , Humans , MicroRNAs/blood , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Female , Male , Intestinal Mucosa/metabolism , Adult , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Middle Aged , Case-Control Studies , ROC Curve , Biomarkers/blood , Interleukin-23/blood , Interleukin-23/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism
9.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748314

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Cellulose , Intestinal Mucosa , Intestine, Small , Metal Nanoparticles , Nanofibers , Rats, Wistar , Silver , Tissue Scaffolds , Wound Healing , Animals , Silver/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Wound Healing/drug effects , Metal Nanoparticles/chemistry , Rats , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/metabolism , Male , Intestine, Small/metabolism , Cattle , Transforming Growth Factor beta/metabolism , Tissue Engineering/methods , Collagen
10.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Article En | MEDLINE | ID: mdl-38742709

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Colitis , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CXCR4 , Regeneration , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mesenchymal Stem Cells/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/therapy , Colitis/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Dextran Sulfate , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Bone Marrow Cells/metabolism
11.
Cancer Cell ; 42(5): 797-814.e15, 2024 May 13.
Article En | MEDLINE | ID: mdl-38744246

The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.


Colitis , Immune Checkpoint Inhibitors , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Interferon-gamma/metabolism , Female , Single-Cell Analysis , Mice
12.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744839

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Gastrointestinal Microbiome/immunology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Female , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Male
13.
Front Cell Infect Microbiol ; 14: 1346087, 2024.
Article En | MEDLINE | ID: mdl-38736751

Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.


Homeostasis , Immunity, Innate , Intestinal Mucosa , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Respiratory Mucosa/microbiology , Respiratory Mucosa/immunology , Epithelial Cells/microbiology , Signal Transduction , Adaptive Immunity , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions
14.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Article En | MEDLINE | ID: mdl-38718306

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Cryptosporidiosis , Interferon-gamma , Intestinal Mucosa , Mice, Knockout , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Mice , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Cryptosporidium , Epithelial Cells/parasitology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Enterocytes/parasitology , Enterocytes/metabolism , Enterocytes/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , STAT1 Transcription Factor/metabolism , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Signal Transduction
15.
Front Immunol ; 15: 1353614, 2024.
Article En | MEDLINE | ID: mdl-38698858

Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.


Gastrointestinal Microbiome , Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Panax/chemistry , Humans , Animals , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Immune System/drug effects , Immune System/metabolism , Immune System/immunology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 765-772, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708511

OBJECTIVE: To investigate the expression level of Kruppel-like transcription factor family member KLF11 in intestinal mucosal tissues of Crohn's disease (CD) and its regulatory effect on intestinal inflammation in CD-like colitis. METHODS: We examined KLF11 expression levels in diseased and normal colon mucosal tissues from 12 CD patients and 12 patients with colorectal cancer using immunofluorescence staining. KLF11 expression was also detected in the colon mucosal tissues of a mouse model of 2, 4, 6-trinitrobenesulfonic acid (TNBS)-induced colitis. A recombinant adenoviral vector was used to upregulate KLF11 expression in the mouse models and the changes in intestinal inflammation was observed. A Caco-2 cell model with stable KLF11 overexpression was constructed by lentiviral infection. The effect of KLF11 overexpression on expressions of JAK2/STAT3 signaling pathway proteins was investigated using immunoblotting in both the mouse and cell models. The mouse models were treated with coumermycin A1, a JAK2/STAT3 signaling pathway agonist, and the changes in intestinal inflammatory responses were observed. RESULTS: The expression level of KLF11 was significantly lowered in both the clinical specimens of diseased colon mucosal tissues and the colon tissues of mice with TNBS-induced colitis (P < 0.05). Adenovirus-mediated upregulation of KLF11 significantly improved intestinal inflammation and reduced the expression levels of inflammatory factors in the intestinal mucosa of the colitis mouse models (P < 0.05). Overexpression of KLF11 significantly inhibited the expression levels of p-JAK2 and p-STAT3 in intestinal mucosal tissues of the mouse models and in Caco-2 cells (P < 0.05). Treatment with coumermycin A1 obviously inhibited the effect of KLF11 upregulation for improving colitis and significantly increased the expression levels of inflammatory factors in the intestinal mucosa of the mouse models (P < 0.05). CONCLUSION: KLF11 is downregulated in the intestinal mucosa in CD, and upregulation of KLF11 can improve intestinal inflammation and reduce the production of inflammatory factors probably by inhibiting the JAK2/STAT3 signaling pathway.


Apoptosis Regulatory Proteins , Colitis , Intestinal Mucosa , Janus Kinase 2 , Repressor Proteins , STAT3 Transcription Factor , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , Mice , Colitis/chemically induced , Colitis/metabolism , Humans , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Caco-2 Cells , Intestinal Mucosa/metabolism , Disease Models, Animal , Crohn Disease/metabolism , Inflammation/metabolism , Up-Regulation , Transcription Factors/metabolism , Transcription Factors/genetics
17.
Cell Stem Cell ; 31(5): 591-592, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701755

Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.


Stem Cells , Stem Cells/metabolism , Stem Cells/cytology , Animals , Humans , Intestines/cytology , Intestines/microbiology , Stress, Physiological , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Cell Differentiation , Mitochondria/metabolism
18.
World J Gastroenterol ; 30(16): 2184-2190, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690020

MicroRNAs (miRNAs), small non-coding RNAs composed of 18-24 nucleotides, are potent regulators of gene expression, contributing to the regulation of more than 30% of protein-coding genes. Considering that miRNAs are regulators of inflammatory pathways and the differentiation of intestinal epithelial cells, there is an interest in exploring their importance in inflammatory bowel disease (IBD). IBD is a chronic and multifactorial disease of the gastrointestinal tract; the main forms are Crohn's disease and ulcerative colitis. Several studies have investigated the dysregulated expression of miRNAs in IBD, demonstrating their important roles as regulators and potential biomarkers of this disease. This editorial presents what is known and what is expected regarding miRNAs in IBD. Although the important regulatory roles of miRNAs in IBD are clearly established, biomarkers for IBD that can be applied in clinical practice are lacking, emphasizing the importance of further studies. Discoveries regarding the influence of miRNAs on the inflammatory process and the exploration of their role in gene regulation are expected to provide a basis for the use of miRNAs not only as potent biomarkers in IBD but also as therapeutic targets for the control of inflammatory processes in personalized medicine.


Biomarkers , Gene Expression Regulation , MicroRNAs , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Biomarkers/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/immunology , Precision Medicine/methods
19.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690023

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
20.
Nutrients ; 16(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732497

Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.


Laurus , Tight Junction Proteins , Animals , Tight Junction Proteins/metabolism , Laurus/chemistry , Permeability , Plant Extracts/pharmacology , Male , Tight Junctions/drug effects , Tight Junctions/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Humans , Cytokines/metabolism
...